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Outline

-     Utilisation of micro-architectured structure as a heat sink medium.
      

1. Analytical approach using two-equation model.    

2. Experimental results of pressure drop and heat transfer measurements

- Novel lightweight metal foams

1. Examples employing metal foams as a heat exchanger

2. Analytical approach using two-equation model.    

3. Experimental results of pressure drop and heat transfer measurements
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Heat sink model using the LFMs

Lattice-frame material (LFM)s are triangulated 3-D structures 
(Tetrahedral cell based)

Greater lateral stiffness  
and lower cost per unit weight over 
honeycombs and metal foams

- Surface area density : 123.68 

- Relative density ( or porosity) : 0.062  (0.938)

Forced air convection heat transfer measurements were conducted 
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Configuration of Lattice-Frame Materials
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(c) Crossflow arrangement of LFMs

(a) Orientation-A (frontal view)

(b) Orientation-B (frontal view)

Two orientations denoted as below were tested for heat transfer 
and pressure drop measurements
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Experimental conditions & set-up

Photograph of test rig 
and inserted LFM 
test sample

Specification of LFM Typical operating parameter
LFM cell bar diameter (d) 0.002 m Inlet coolant mean velocity  1.0~26.0 m/s

Longitudinal cell pitch ( 0XS ) 0.0127 m Bar Reynolds number 3200Re120 �� d

Transverse cell pitch ( 0ZS ) 0.0147 m Input heat flux 4, 8 and 16 K 2/ mW

Cell stut length (l) 0.0147 m Inlet coolant temperature 300 K

Cell height (H) 0.012 m Outlet coolant temperature 305.0 K~360.0 K
Material LM25 Test section inlet pressure 1 bar (ambient condition)

Table of parameters 
for the current test
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Governing Equations

 Momentum Equation

Energy Equation
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K  = permeability
�f  =  fluid density
F  = inertial coefficient
�  = porosity
       wetted area ratio
kse, kfe = effective thermal
conductivity
Cf = specific heat of fluid
h = interstitial heat transfer
coefficient;
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 Solid and fluid temperature distributions for different Reynolds numbers
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Results of Hydraulic Resistance
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 based on LFM cell bar diameter

-Operating range
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Infrared thermal image of top LFM substrate 
showing linear increase of temperature 
in constant heat flux boundary condition
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Coolant velocity distributions along 
the channel height 
for both inlet and outlet of the test section
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Average Nusselt number
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Correlation for the LFMs
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The best curve fit for both orientations
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Interstitial heat transfer coefficient, h proposed by
Zukauskas for Staggered banks of cylinder array

Staggered cylinders
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Average Nusselt number 

Reynolds number 
based on 
cylinder bar 
diameter used.
where
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and Prandtl number
Pr is assumed to be 
constant e.g. 0.71
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Comparisons with other heat sink media
(from Kays and London, “Compact heat exchangers”)

x x x x x
x x

ReDh

I(
=

j/
f)

10000 20000 30000
10-2

10-1

100

LFM : Orientation A
LFM : Orientation B
Bank of cylinders
W avy-fin plate-fin surface
Cross-rod matrices, inline stacking
Plain pin-fin
Infinitely randomly stacked sphere matrixx

LFM O-A

LFM O-B

J-Colburn factor :

3
2

hD

3
2

Pr
PrRe

NuPrStJ
�
�

�

�

�
�

�

�
��

Efficiency Index

     I = J / f



Engineering Department / University of CambridgeThe Cambridge Centre for Micromechanics & Whittle Laboratory         CUED

Future Works
(1) Detailed local heat transfer mechanism 
is anticipated by using Thermochromic 
Liquid Crystal (TLC) / Infra Red imagings.

(2) Construct heat sink design parameters 
using LFMs e.g. cell size effects, number 
of stacked layers, aspect ratio of the heat 
sink channels etc. 

Perspex

Flat black coating

Liquid Crystal 
Ro Ri

Heated air flow

Liquid crystal coated
Hollow cylinder

Colour change of TLC is monitored 
from inside of the cylinder Test rig for single cylinder and a different 

version of rig for LFMs will be constructed.

Traverse gears

Test section

Air exits
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Light weight metal foam heat exchangers

-Examples for heat exchanger application

-Flow resistance
 
-Thermal resistance
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Fabrication of metal foam heat exchangers

Metal foam compact heat exchanger 
for high temperature service. 
Foam material is PFCT's FeCrAlY.

The Cambridge Centre for Micromechanics & Whittle Laboratory       CUED

SEM micrograph of a foam strut sintered 
to a solid tube.  
Bonding region shows metallurgical 
sintering between foam and solid.
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Fabrication of metal foam heat exchangers

Example assemblies 
manufactured 
in a proprietary 
co-sintering technique
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SEM images of reticulated metal foam structure (FeCrAlY). 
Interconnected tortuouspathways create turbulence 
in through-flowing fluids. 
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Governing Equations
 Momentum Equation

Energy Equation
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Results of Hydraulic Resistance
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Average Nusselt number,
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Velocity and temperature distributions for different Reynolds numbers
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Predictions of local and overall Nusselt numbers
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Comparisons with solid strut metal foams
                           [from Calmidi et al. (2000)]

fh k/DhNu �

Nusselt number 
based on hydraulic diameter

where red, green and yellow 
filled symbols indicate 
10%, 7.5% and 5% 
relative density, respectively
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